Fast TA Documentation¶
Fast TA is an optimized, high-level technical analysis library used to compute technical indicators on financial datasets. It is written entirely in C, and uses SIMD vectorization as well. Fast TA is built with the NumPy C API.
Additional Support¶
- Ask or search for questions in StackOverflow using the fast-ta tag.
- Report bugs in our issue tracker.
Introduction¶
Fast TA Installation Guide¶
Installing Fast TA¶
Fast TA runs on Python 3.x under CPython. NOTE: Fast TA requires NumPy.
To install Fast TA, run:
pip install fast-ta
Report any installation issues in our issue tracker.
- Fast TA Installation Guide
- Get Fast TA installed on your computer.
Indicators¶
Momentum Indicators¶
Awesome Oscillator¶
-
fast_ta.momentum.
AO
(high : np.array, low : np.array, s : int = 5, l : int = 34) → np.array¶ Compute the Awesome Oscillator Indicator.
Parameters: - high (np.array) – High Time Series
- low (np.array) – Low Time Series
- s (int) – Short Period
- l (int) – Long Period
Returns: Awesome Oscillator Indicator
Return type: np.array
KAMA¶
-
fast_ta.momentum.
KAMA
(close : np.array, n : int = 10, f : int = 2, s : int = 30) → np.array¶ Compute the KAMA Indicator.
Parameters: - close (np.array) – Close Time Series
- n (int) – Period
- f (int) – Fast EMA Periods
- s (int) – Slow EMA Periods
Returns: KAMA Indicator
Return type: np.array
ROC¶
-
fast_ta.momentum.
ROC
(close : np.array, n : int = 12) → np.array¶ Compute the ROC Indicator.
Parameters: - close (np.array) – Close Time Series
- n (int) – Period
Returns: ROC Indicator
Return type: np.array
RSI¶
-
fast_ta.momentum.
RSI
(close : np.array, n : int = 14, threads : int = 1) → np.array¶ Compute the Relative Strength Indicator.
Parameters: - close (np.array) – Close Time Series
- n (int) – Period
- threads (int) – Number of Threads to Use During Computation (Experimental)
Returns: Relative Strength Indicator
Return type: np.array
Stochastic Oscillator¶
-
fast_ta.momentum.
StochasticOscillator
(high : np.array, low : np.array, close : np.array, n : int = 14, d_n : int = 3) → np.array¶ Compute the Stochastic Oscillator Indicator.
Parameters: - high (np.array) – High Time Series
- low (np.array) – Low Time Series
- close (np.array) – Close Time Series
- n (int) – Period
- d_n (int) – SMA Period
Returns: Stochastic Oscillator Indicator And Signal Line
Return type: (np.array, np.array)
TSI¶
-
fast_ta.momentum.
TSI
(close : np.array, r : int = 25, s : int = 13) → np.array¶ Compute the True Strength Indicator.
Parameters: - close (np.array) – Close Time Series
- r (int) – First EMA Period
- s (int) – Second EMA Period
Returns: True Strength Indicator
Return type: np.array
Ultimate Oscillator¶
-
fast_ta.momentum.
UltimateOscillator
(high : np.array, low : np.array, close : np.array, s : int = 7, m : int = 14, l : int = 28, ws : float = 4, wm : float = 2, wl : float = 1) → np.array¶ Compute the Ultimate Oscillator Indicator.
Parameters: - high (np.array) – High Time Series
- low (np.array) – Low Time Series
- close (np.array) – Close Time Series
- s (int) – Short Period
- m (int) – Medium Period
- l (int) – Long Period
- ws (float) – Short Period Weight
- wm (float) – Medium Period Weight
- wl (float) – Long Period Weight
Returns: Ultimate Oscillator Indicator
Return type: np.array
Williams %R¶
-
fast_ta.momentum.
WilliamsR
(high : np.array, low : np.array, close : np.array, n : int = 14) → np.array¶ Compute the Williams %R Indicator.
Parameters: - high (np.array) – High Time Series
- low (np.array) – Low Time Series
- close (np.array) – Close Time Series
- n (int) – Period
Returns: Williams %R Indicator
Return type: np.array
Volume Indicators¶
Accumulation/Distribution Index (ADI)¶
-
fast_ta.volume.
ADI
(high : np.array, low : np.array, close : np.array, volume : np.array) → np.array¶ Compute the Accumulation/Distribution Index Indicator.
Parameters: - high (np.array) – High Time Series
- low (np.array) – Low Time Series
- close (np.array) – Close Time Series
- volume (np.array) – Volume Time Series
Returns: Accumulation/Distribution Index Indicator
Return type: np.array
Chaikin Money Flow (CMF)¶
-
fast_ta.volume.
CMF
(high : np.array, low : np.array, close : np.array, volume : np.array, n : int = 20) → np.array¶ Compute the Chaikin Money Flow (CMF) Indicator.
Parameters: - high (np.array) – High Time Series
- low (np.array) – Low Time Series
- close (np.array) – Close Time Series
- volume (np.array) – Volume Time Series
- n (int) – Period
Returns: Chaikin Money Flow (CMF) Indicator
Return type: np.array
Ease of movement (EoM, EMV)¶
-
fast_ta.volume.
EMV
(high : np.array, low : np.array, volume : np.array, n : int = 14) -> (np.array, np.array)¶ Compute the Ease of movement (EoM, EMV) Indicator.
Parameters: - high (np.array) – High Time Series
- low (np.array) – Low Time Series
- volume (np.array) – Volume Time Series
- n (int) – Period
Returns: Ease of movement (EoM, EMV) Indicator, n-Period SMA of EMV Indicator
Return type: (np.array, np.array)
Force Index (FI)¶
-
fast_ta.volume.
FI
(close : np.array, volume : np.array, n : int = 13) → np.array¶ Compute the Force Index (FI) Indicator.
Parameters: - close (np.array) – Close Time Series
- volume (np.array) – Volume Time Series
- n (int) – Period
Returns: Force Index (FI) Indicator
Return type: np.array
Money Flow Index (MFI)¶
-
fast_ta.volume.
MFI
(high : np.array, low : np.array, close : np.array, volume : np.array, n : int = 14) → np.array¶ Compute the Money Flow Index (MFI) Indicator.
Parameters: - high (np.array) – High Time Series
- low (np.array) – Low Time Series
- close (np.array) – Close Time Series
- volume (np.array) – Volume Time Series
- n (int) – Period
Returns: Money Flow Index (MFI) Indicator
Return type: np.array
Negative Volume Index (NVI)¶
-
fast_ta.volume.
NVI
(close : np.array, volume : np.array) → np.array¶ Compute the Negative Volume Index (NVI) Indicator.
Parameters: - close (np.array) – Close Time Series
- volume (np.array) – Volume Time Series
Returns: Negative Volume Index (NVI) Indicator
Return type: np.array
On-Balance Volume (OBV)¶
-
fast_ta.volume.
OBV
(close : np.array, volume : np.array) → np.array¶ Compute the On-Balance Volume (OBV) Indicator.
Parameters: - close (np.array) – Close Time Series
- volume (np.array) – Volume Time Series
Returns: On-Balance Volume (OBV) Indicator
Return type: np.array
Volume-Price Trend (VPT)¶
-
fast_ta.volume.
VPT
(close : np.array, volume : np.array) → np.array¶ Compute the Volume-Price Trend (VPT) Indicator.
Parameters: - close (np.array) – Close Time Series
- volume (np.array) – Volume Time Series
Returns: Volume-Price Trend (VPT) Indicator
Return type: np.array
Volume Weighted Average Price (VWAP)¶
-
fast_ta.volume.
VWAP
(high : np.array, low : np.array, close : np.array, volume : np.array, n : int = 14) → np.array¶ Compute the Volume Weighted Average Price (VWAP) Indicator.
Parameters: - high (np.array) – High Time Series
- low (np.array) – Low Time Series
- close (np.array) – Close Time Series
- volume (np.array) – Volume Time Series
- n (int) – Period
Returns: Volume Weighted Average Price (VWAP) Indicator
Return type: np.array
Volatility Indicators¶
Average True Range (ATR)¶
-
fast_ta.volatility.
ATR
(high : np.array, low : np.array, close : np.array, n : int = 14) → np.array¶ Compute the Average True Range (ATR) Indicator.
Parameters: - high (np.array) – High Time Series
- low (np.array) – Low Time Series
- close (np.array) – Close Time Series
- n (int) – Period
Returns: Average True Range (ATR) Indicator
Return type: np.array
Bollinger Bands (BOL)¶
-
fast_ta.volatility.
BOL
(close : np.array, n : int = 20, ndev : float = 2.0) → np.array¶ Compute the Bollinger Bands (BOL) Indicator.
Parameters: - close (np.array) – Close Time Series
- n (int) – Period
- ndev (int) – Standard Deviation Factor
Returns: Bollinger Bands (BOL) Indicator
Return type: np.array
Donchian Channel (DC)¶
-
fast_ta.volatility.
DC
(high : np.array, low : np.array, n : int = 14) → np.array¶ Compute the Donchian Channel (DC) Indicator.
Parameters: - high (np.array) – High Time Series
- low (np.array) – Low Time Series
- n (int) – Period
Returns: Lower, Middle, and Upper Donchian Channel (DC) Indicators
Return type: np.array
Keltner Channel (KC)¶
-
fast_ta.volatility.
KC
(high : np.array, low : np.array, close : np.array, n1 : int = 14, n2 : int = 10, num_channels : int = 1) → np.array¶ Compute the Keltner Channel (KC) Indicator.
Parameters: - high (np.array) – High Time Series
- low (np.array) – Low Time Series
- close (np.array) – Close Time Series
- n1 (int) – EMA Period
- n2 (int) – ATR Period
- num_channels (int) – Number of Bands In Each Direction Around EMA
Returns: Keltner Channel (KC) Indicator Lines
Return type: np.array
- Momentum Indicators
- View the documentation for the momentum indicators.
- Volume Indicators
- View the documentation for the volume indicators.
- Volatility Indicators
- View the documentation for the volatility indicators.
Contributing¶
- Fast TA Testing And Benchmarking
- Learn how to test and benchmark the Fast TA library.
License¶
The MIT License (MIT)¶
Copyright 2020 Cristian Bicheru, Calder White
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- The MIT License (MIT)
- The Fast TA Library is licensed under the MIT License.
Credits¶
Developed with passion by the Fast TA Team.